

Vipac Engineers and Scientists Limited 42/34 Ralph Street, Alexandria, NSW, 2015 Australia Private Bag 16, Port Melbourne, VIC 3207, Australia t. +61 2 9422 4222 | e. sydney@vipac.com.au w. www.vipac.com.au | A.B.N. 33 005 453 627 | A.C.N. 005 453 627

Olsson & Associates Architects Pty Ltd

77-81 Auburn Rd & 19 Neutral Ave Birrong - DA Noise

DA Report

20E-24-0234-TRP-63489-1

19 December 2024

Job Title:		77-81 Auburn Rd & 19) Neutral Ave Bir	rong - DA Noise			
Report Title:		DA Report					
Document Re	eference:	20E-24-0234-TRP-634	189-1				
Prepared For	:		Prepared By:				
Olsson & Associa	ates Architect	s Pty Ltd	Vipac Engineers	and Scientists Limited			
Level 4			42/34 Ralph Stre				
68-72 Wentwort			Alexandria, NSW	, 2015			
		, 2010, Australia	Australia				
Contact: Mega							
Tel: 02928101	181		Tel: +61 2 942	22 4222			
Author:	Cikai Lin 19 Dec 2	024	AL RB	Project	Engineer		
Reviewer:	Vasos Ale	exandrou	Director				
	19 Dec 2	024	MOX	andy			
Issued By:	Cikai Lin		1	Project	Engineer		
	19 Dec 2024 AARDING						
Revision Hist	Revision History:						
Rev. # Con	ev. # Comments / Details of change(s) mad			Date	Revised by:		
Rev. 00 Orig	ginal issue			17 Dec 2024			
Rev. 01 Clie	nt Commer	ts		19 Dec 2024	CL		

NOTE: This report has been prepared solely for the benefit of the client to whom this report is addressed for use herein ("Client") unless otherwise agreed in writing by Vipac Engineers and Scientists Limited ACN 005 453 627 ("Vipac"). Neither the whole of this report or any part of it may be published, duplicated or circulated without the prior written approval of Vipac except as required by law. Vipac does not assume any responsibility or liability for any losses suffered as a result of the publication, duplication or circulation of this report and excludes all liability whatsoever to any third party who may use or rely on the whole, or any part of this report.

Vipac has prepared this report using all reasonable care, skill and due diligence within the time period, budget and resources allocated to Vipac as agreed with the Client. Vipac excludes all liability to the Client whatsoever, whether in whole or in part, for the Client's use or reliance on the report other than for the purposes set out in the report, or any matters outside the agreed scope of the work.

For the purposes of preparing this report, reliance has been placed upon the material, representations, information and instructions provided to Vipac unless otherwise stated in the report. Originals of documents provided have not been required and no audit or examination of the validity of the documentation, representations, information or instructions provided has been undertaken except to the extent otherwise stated in this report. Information and findings contained in this report are based on Vipac's interpretation of data collected.

This document contains commercial, conceptual, engineering and other information that is proprietary to Vipac. The inclusion of this information in the report does not grant the Client any license to use the information without Vipac's prior written permission.

Table of Contents

1									
2	SITE	LOCATION							
3		REFERENCES							
4	NOIS	SE MONITOR	1NG5						
4.1	METH	ODOLOGY &	INSTRUMENTATION6						
4.2	MEAS	UREMENT RE	SULTS6						
5	NOIS	SE CRITERIA							
5.1	PROJ	ECT SPECIFIC	NOISE CRITERIA						
	5.1.1	AMENITY NOI	SE CRITERIA7						
	5.1.2	INTRUSIVENE	SS NOISE CRITERIA7						
	5.1.3	PROJECT SPE	CIFIC NOISE LEVELS						
5.2	INTE	RNAL STEADY	STATE NOISE REQUIREMENTS8						
5.3	NCC	SOUND INSU	LATION REQUIREMENTS9						
5.4			STUCTION NOISE GUIDELINES9						
6	MIN		TRUCTION REQUIREMENTS 11						
6.1	ROAD	NOISE INTR	USION11						
6.2	EXTERNAL WALLS								
	2/112	RNAL WALLS							
6.3		_							
6.3 6.4	EXTE	RNAL ROOF							
	EXTE GLAZ	RNAL ROOF							
6.4	EXTE GLAZ INTE	RNAL ROOF ING RTENANCY W/							
6.4 6.5	EXTE GLAZ INTE INTE	RNAL ROOF ING RTENANCY WA							
6.4 6.5 6.6	EXTE GLAZ INTE INTE ACOL	RNAL ROOF ING RTENANCY WARTENANCY FL ISTIC SEALAN	12 						
6.46.56.66.7	EXTE GLAZ INTE INTE ACOU GAPS SERV	RNAL ROOF ING RTENANCY WA RTENANCY FL JSTIC SEALAN AND SEALS ICES/HYDRAU	12 ALLS						
6.46.56.66.76.8	EXTE GLAZ INTE INTE ACOU GAPS SERV	RNAL ROOF ING RTENANCY WA RTENANCY FL JSTIC SEALAN AND SEALS ICES/HYDRAU	12 12 ALLS						
 6.4 6.5 6.6 6.7 6.8 6.9 	EXTE GLAZ INTE INTE ACOU GAPS SERV CON	RNAL ROOF ING RTENANCY WA RTENANCY FL JSTIC SEALAN AND SEALS ICES/HYDRAU	12 ALLS						

Vipac Engineers & Scientists Ltd (Vipac) was commissioned by Olsson & Associates Architects Pty Ltd to provide a Development Application (DA) noise assessment for the proposed development, located at 77-81 Auburn Road, Birrong NSW, 2143.

2 SITE LOCATION

The proposed mixed-use development consists of 5 stories with commercial space and residential apartments. It is located on the corner of Auburn Rd and Neutral Ave, in the B1 Neighbourhood Centre land zoning area. Figure 2.1 shows the location of the proposed development and the nearby potentially noise impacted receivers.

Table 2.1:	Naiaa	Consitius	Dessiver	Looptions
Table 2.1.	Noise	Sensitive	Receiver	LOCALIONS

Receiver	Classification	Address	Orientation to Subject Site	Distance to Subject Site (m)
R01	Residential	62 Auburn Rd	Northwest	20
R02	Residential	16 Neutral Ave	Northeast	20
R03	Residential	64 Auburn Rd	West	20
R04	Commercial	83-85 Auburn Rd	South	0
R05	Residential	17 Neutral Ave	East	0

The following references were used in this assessment.

- EPA NSW Noise Policy for Industry 2017 (NPI)
- AS/NZS 2107:2016 Acoustics-Recommended design sound levels and reverberation times for building interiors
- Building Code of Australia (BCA) / National Construction Code (NCC): Part F5 Sound Transmission and Insulation.
- NSW Department of Planning, Development near rail corridors and busy roads Interim Guideline 2008

Table 3.1: Architectural Drawing Sets

Drawing No.	Revision	Date	Description
SK00	J	13/09/2024	Cover
A-620	F	19/12/2024	Area Calculations
SK03	А	13/09/2024	Survey Plan
A-005	L	19/12/2024	Site Plan
A-100	0	19/12/2024	Basement 2 Plan
A-101	0	19/12/2024	Basement 1 Plan
A-102	Q	19/12/2024	Ground Level 1 Plan
A-103	N	19/12/2024	Level 2 Plan
A-104	М	19/12/2024	Level 3 Plan
A-105	М	19/12/2024	Level 4 Plan
A-106	G	19/12/2024	Level 5 Plan
A-200	к	19/12/2024	Elevations 1
A-201	к	19/12/2024	Elevations 2
A-300	I	19/12/2024	Sections 1
A-301	Н	19/12/2024	Sections 2
A-302	Н	19/12/2024	Sections 3
A-303	Н	19/12/2024	Sections 4

4 NOISE MONITORING

Noise monitoring was conducted for a total of seven days from 05/12/2024 until 12/12/2024 to determine the existing noise environment of the subject site and the associated road noise.

Figure 4.1 shows the location of the noise logger. The noise logger was placed along Auburn Road, on the roof of a hardware store, data gathered from the logger will be used to determine the noise levels for the acoustic assessment.

ViPΔC

Figure 4.1: Location of Noise Logger

4.1 METHODOLOGY & INSTRUMENTATION

Existing background noise levels were measured continuously for a period of seven days with a Class 1 noise logger. The noise logger was configured to measure instantaneous noise levels with a 'Fast' time weighting and 'A' frequency weighting. A field reference check was conducted for the microphone immediately before and after the measurement sequence and the microphone was appropriately fitted with a windshield.

The L_{A90} is used to determine the Rating Background Level (RBL) for application throughout the acoustic assessment. This statistical measurement is the sound pressure level which is exceeded for 90% of the measurement period. The L_{Aeq} was also collected during the monitoring period and represents the equivalent continuous A-weighted sound pressure level of a continuous steady sound that has the same A-weighted sound energy as the actual time-varying sound.

Table 4.1: Equipment List

Instrument	Serial Number	Next Calibration Date
ACOEM Fusion Noise Logger 01dB	90-3553	29/02/2025
Bruel & Kjaer Acoustical Calibrator	2445463	18/04/2025

4.2 MEASUREMENT RESULTS

Measurement results obtained from the noise logger have been analysed in accordance with the procedures set out in the NSW Noise Policy for Industry (NPI) for determining existing background noise levels of the surrounding area. Results are shown in Table 4-2.

Table 4.2: Background & Ambient Noise Monitoring Results, Auburn Rd

	ABL (LA90)			LAeq			
Date	Day	Evening	Night	Day	Evening	Night	
05/12/2024	52	49	36	64	62	59	
06/12/2024	53	48	38	64	63	60	
07/12/2024	37	50	38	59	61	57	
08/12/2024	50	47	33	62	61	58	
09/12/2024	52	47	34	63	63	60	
10/12/2024	52	47	31	63	62	58	
11/12/2024	52	47	35	63	62	58	
12/12/2024	52	/	/	62	/	/	
Median (RBL)	52	47	35	/	/	/	
Log Average	/	/	/	63	62	59	

Table 4.2 displays all the measurement values gathered during the 7-day unattended noise logging. Please refer to Appendix B for the noise logging graphs.

Table 4-3 provides the monitoring data from road traffic noise.

Table 4.3 Noise logger traffic noise measurement

	Da	Day Night		jht
Location	LAeq – 15hr	LAeq – Noisiest 1Hr	LAeq - 9hr	LAeq – Noisiest 1Hr
Auburn Road	63	65	59	62

5 NOISE CRITERIA

5.1 PROJECT SPECIFIC NOISE CRITERIA

The project specific noise criterion limits the noise that a development can make in accordance with the NSW Noise Policy for Industry (2017) to limit the effects of the proposed development on the existing sensitive receivers.

5.1.1 AMENITY NOISE CRITERIA

The amenity criterion is based on noise criteria specific to land use and associated activities. It aims to limit continuing increases in noise levels. The maximum ambient noise level within an area should not normally exceed the acceptable noise levels specified in Table 5.1.

Receiver	Noise Amenity Area	Time of Day	L _{Aeq} , dB(A)
		Day	60
Residential	Urban	Evening	50
		Night	45
Commercial Premises	All	When in use	65

Table 5.1: Amenity Noise Levels

5.1.2 INTRUSIVENESS NOISE CRITERIA

The intrusiveness criterion states that the equivalent continuous noise level of the source should not be more than 5 decibels above the measured background level when measured over a 15-minute period. It aims to control intrusive noise impacts in the short term for residences.

The intrusiveness criterion is summarised as follows:

 $L_{Aeq, 15 \text{ minute}} \leq \text{rating background level} + 5 \text{ dB}$

5.1.3 PROJECT SPECIFIC NOISE LEVELS

In assessing the noise impact from industrial sources, both the intrusive and the amenity criteria must be considered for residential receivers. The more stringent of the intrusive or the amenity criteria sets the project specific noise level.

Table 5.2: Project Specific Noise Level

Receiver	Indicative Noise Amenity Area	Time of Day	Rating Background Level (RBL)	Intrusiveness Criterion dB(A)	Amenity Criterion dB(A)	Project Specific Noise Level dB(A)
		Day	52	57	60	57
Residence	Urban	Evening	47	52	50	50
		Night	35	40	45	40
Commercial Premises	Commercial Activities	When in use	-	-	65	65

In assessing noise levels at residences, the noise level is to be assessed at the most affected point on or within the residential property boundary or, if this is more than 30m from the residence, at the most-affected point within 30m of the residence. In assessing noise levels at commercial or industrial premises, the noise level is to be assessed at the most-affected point on or within the property boundary.

5.2 INTERNAL STEADY STATE NOISE REQUIREMENTS

Table 5.3 shows the residential noise criteria for both road and rail noise as specified in the Infrastructure SEPP and further referenced in Development near Rail Corridors and Busy Roads – Interim guideline. These requirements only apply if the traffic count is >40 000 AADT or the road is a freeway, tollway, or transit way. In this case the noise level is advisory.

Type of occupancy	L _{Aeq} , dB(A)	Applicable time period
	≤ 40	Day 7am to 10 pm
Sleeping areas (bedroom)	≤ 35	Night 10 pm to 7 am
Other habitable rooms (excl. garages, kitchens, bathrooms & hallways)	≤ 40	At any time

Indoor design sound levels for other indoor spaces within the development have been extracted from the Australian Standard 2107: *Acoustics – Recommended design sound levels and reverberation times for building interiors*; this standard provides a recommended indoor noise level for various occupant buildings/spaces. The relevant spaces within this development are presented in Table 5.4.

Type of Occupancy	Type of Activity	Design Sound Levels, L _{Aeq} dB(A)
	Apartment common areas	45 to 50
Residential – Houses and apartments	Living Areas	30 to 40
in suburban area or near minor roads	Sleeping Area (Nighttime)	30 to 35
	Enclosed car park	Less than 65
	Small retail stores (general)	Less than 50
Commercial	Coffee shops, restaurants	40 to 50

5.3 NCC SOUND INSULATION REQUIREMENTS

The walls between units must meet the requirements outlined in NCC – Building Code of Australia, Section F5. The relevant requirements are listed in Table 5.5.

Table 5.5: NCC Acoustic Requirements

SEPARATING PARTITIONS	Minimum NCC Requirement
WALLS AND FLOORS	
Walls between sole occupancy	Rw + Ctr 50
Walls between apartments and stairway, public corridors, public lobby or the like	Rw 50
Walls between wet areas (bathrooms, sanitary compartment, laundry or kitchen) and a habitable room (other than kitchen) in adjoining apartments	Rw + Ctr 50 & of discontinuous construction
Walls between a plant room or lift shaft and a sole occupancy unit	Rw 50 & of discontinuous construction
Doors assemblies located in a wall between an apartment and a stairway, public corridor, public lobby or the like	Rw 30
Floors between sole occupancy units or between a sole occupancy unit and plant room, lift shaft, stairway, public corridor, public lobby or the like.	Rw + Ctr 50 & Ln,w < 62
DOORS	
Door assemblies located in a wall between an apartment and a stairway, public corridor, public lobby or the like.	Rw 30
SERVICES	
 a duct, soil, waste or water supply pipe including a duct or pipe that is located in a wall or floor cavity, serves or passes through more than one sole occupancy unit 	
(i) if the adjacent room is a habitable room (other than a kitchen); or	Rw + Ctr 40
(ii) if the room is a non-habitable room	Rw + Ctr 25
(b) a storm water pipe that passes through a sole occupancy unit	
 (i) if the adjacent room is a habitable room (other than a kitchen); or 	Rw + Ctr 40
(ii) if the room is a non-habitable room	Rw + Ctr 25

Note, according to the NCC requirements:

- 1. For the purpose of complying with the NCC 2011 sound insulation requirements, the $R_w + C_{tr}$ must be determined in accordance with AS/NZS 1276.1 or ISO 717.1, using results from laboratory measurements.
- 2. Discontinuous construction means a wall system having a minimum 20mm cavity between two separate leaves with:
 - for masonry, where wall ties are required to connect leaves, the ties are of the resilient type; and,
 - For other than masonry, there is no mechanical linkage between leaves except at the periphery.
 - A staggered stud wall, which has a common top and bottom plate, is not considered to be discontinuous.
- 3. A flexible coupling must be used at the point of connection between the service pipes in a building and any circulating pump or other pump

5.4 NSW INTERIM CONSTUCTION NOISE GUIDELINES

Section 4.1 of the NSW Interim Construction Noise Guideline (ICNG) provides construction noise management levels for various noise sensitive receivers and what to do if the construction noise exceeds the management levels. The receiver criteria applied to this development is shown in Table 5.6 and Table 5.7.

Noise Affected (Day) = RBL + 10 dB Noise Affected (Evening/Night) = RBL + 5 dB

Table 5.6: Residential Noise Management Level

Time of day	Management level, (L _{Aeq, 15 minute})	How to Apply	
	Noise affected 62 dB(A)	The noise affected level represents the point above which there may be some community reaction to noise.	
Recommended standard hours		 Where the predicted or measured L_{Aeq (15 min}) is greater than the noise affected level, the proponent should apply all feasible and reasonable work practices to meet the noise affected level. The proponent should also inform all potentially impacted residents of the nature of works to be carried out, the expected noise levels and duration, as well as contact details. 	
Monday to Friday 7am to 6pm Saturday		The highly noise affected level represents the point above which there may be strong community reaction to noise.	
8am to 1pm	Highly noise affected	 Where noise is above this level, the relevant authority (consent, determining or regulatory) may require respite periods by 	
No work on Sundays and Public Holidays		restricting the hours that the very noisy activities can occur, taking into account:	
Fublic Holidays	75 dB(A)	 times identified by the community when they are less sensitive to noise (such as before and after school for works near schools, or mid-morning or mid-afternoon for works near residences. 	
		if the community is prepared to accept a longer period of construction in exchange for restrictions on construction times.	
		A strong justification would typically be required for works outside the recommended standard hours.	
Outside recommended	Noise affected Evening: 52 dB(A) Night: 40 dB(A)	 The proponent should apply all feasible and reasonable work practices to meet the noise affected level. 	
standard hours		 Where all feasible and reasonable practices have been applied and noise is more than 5 dB(A) above the noise affected level, the proponent should negotiate with the community. For guidance on negotiating agreements section 7.2.2. 	

Table 5.7: Commercial Land Uses Noise Management Level

Land Use	Management Level L _{Aeq (15min)} (applies when properties are being used)	
Offices, retail outlets	70 dB(A)	

A further noise and vibration management plan can be completed by a suitably qualified engineer once the development application has been approved.

6 MINIMUM CONSTRUCTION REQUIREMENTS

6.1 ROAD NOISE INTRUSION

iPΛC

SoundPLAN computer noise modelling software was used to predict noise levels at the façades. The use of the software and referenced modelling methodology is accepted for use in the state of NSW by NSW EPA for environmental noise modelling purposes.

Since no official traffic volume data from Transport of NSW is present for Auburn Road, the unattended logger data was used to calibrate the digital model to project road noise levels in 10-years' time, this is then used to determine the minimum building construction requirements of the development.

Verification of the traffic volume via a traffic engineer would provide a more accurate prediction. The following items were used for modelling purposes:

- 50 kph speed limit
- Bituminous surface
- Day 97/3%, Night 100/0% Car to Truck Ratio
- Current ADT Volume of 15,600
- 3% increase of Traffic Volume per year

Table 6.1 lists the predicted maximum façade noise levels for each floor. This data was used to determine the minimum construction requirements, such as external wall, roof and glazing.

	Noise Level dB(A)				
Façade Direction	Ground Floor (Level 1)	Level 2	Level 3	Level 4	Level 5
West	64.4	65.6	65.1	64.4	63.8
South	45.0	47.6	49.7	52.6	55.4
East	44.8	46.6	47.2	47.7	48.1
North	55.4	57.4	58.2	58.0	57.8

Table 6.1 SoundPlan Model Noise Levels per Unit

6.2 EXTERNAL WALLS

The recommended acoustic rating of all external walls is $Rw \ge 50$. Examples of walls that meet requirements are shown in Table 6.2. Alternative systems can be used provided the Rw rating is satisfied, however an acoustic review is recommended at CC stage.

Table 6.2: External Wall Systems Examples

No.	Diagram	Wall Description	Manufacturers Data/Predicted	R _w / R _w +C _{tr}
WT02	EXTERNAL SIDE	110mm Clay ¹ , 40mm cavity, 90mm seasoned Timber Stud, Insulation ² , 13mm Plasterboard	Predicted	55/48
WM01	EXTERNAL SIDE	2x 110mm masonry ¹	Predicted	51/47
WM02	EXTERNAL SIDE	190mm Block Work ¹	Predicted	50/45

 $^1\,\text{Masonry}$ density of 1600kg/m³ was used in the INSUL Prediction

- ² 50mm thick of 10kg/m³ fibreglass insulation was used in this prediction.
- ³ Fibre cement with surface mass of 9.4kg/m² was used in the INSUL Prediction.

6.3 EXTERNAL ROOF

The recommended acoustic rating for compliance of the roof is $Rw \ge 45$. Alternative systems can be used provided the Rw rating is satisfied, however an acoustic review is recommended at CC stage.

Table 6-3 provides an example of a compliant roof system:

Table 6.3: Roof System Examples

System	Description	Prediction Performance
Roof System 1	A steel sheet roof of minimum 0.42mm thick with at minimum Bradford Anticon 55 insulation over battens, ceiling joist or trusses at 600mm max centres over one layer of 13mm GYPROCK FYRCHECK plasterboard with 215 Gold Batts 4.0 cavity infill	Rw 46
Roof System 2	200 mm thick Concrete Slab (Density 468 kg/m ³)*	Rw 59

*The density of the concrete slab may influence the acoustic performance of a floor system. A denser concrete will increase the noise reduction performance, while a lighter concrete will transmit more noise.

6.4 GLAZING

The minimum glazing requirements for the development are shown in Table 6.4. The rooms most affected are the rooms facing Auburn Road. Standard 5mm glass typically achieves an $\mathbf{Rw} \ge 24$, which is sufficient for facades not specified Table 6.4. It should be noted that the glazing requirements were calculated based on the recommendation that external walls will have a minimum Rw 50 acoustic rating and the roofing will have a minimum Rw 45 acoustic rating.

Table 6.4: Glazing Requirements

façade Direction	Location	Minimum R _w rating
	Bedrooms	38
Northwest	Living rooms	32
	Bedrooms	36
West	Living rooms	32
	Bedrooms	32
North	Living rooms	30
South	Living rooms	33
North	Commercial	24
West	Commercial	26

Certified laboratory test certificates should be supplied for the window glazing assemblies at the subsequent Construction Certificate stage for review. Table 6.5 provides typical Rw values for various windows, and their corresponding thickness. This table should only be used as a guide for window Rw values, as different glass manufacturers have different ratings and thicknesses for their systems.

Table 6.5: Typical Window Reduction Weighting (R_w) Value

Glazing	Minimum R _w rating	Window Seals
4mm Float	30	Acoustic Seals
6.38mm Laminate	33	Acoustic Seals
12.76mm Laminate	38	Acoustic Seals

6.5 INTERTENANCY WALLS

All intertenancy walls must have an $Rw + Ctr \ge 50$. In addition, all walls between bathrooms, kitchens (wet areas) and bedrooms, living rooms must have discontinuous construction.

An example of a wall system that satisfies BCA requirements for intertenancy walls is shown in Table 6.6. Alternative systems can be used provided the Rw rating is satisfied, however an acoustic review is recommended at CC stage.

Table 6.6: Undertenancy Wall System Examples

System	Wall Description	R _w / R _w + C _{tr}
Wall System 1	13mm Standard plasterboard, 75mm HEBEL Power Panel, 35mm gap, 64mm steel stud, 50mm (11kg/m ³) Bradford Glasswool, 2 x 13mm Standard Plasterboard.	67/56 Discontinuous
Wall System 2	10mm plasterboard, 70mm timber studs at 450mm maximum centres, 50mm (11kg/m ³) Bradford Glasswool, 20mm air gap, 75mm HEBEL Power Panel, 20mm gap, 70mm timber studs at 450mm maximum centres, 50mm (11kg/m ³) Bradford Glasswool, 10mm Plasterboard.	66/52 Discontinuous
Wall System 3	13mm Standard plasterboard, 75mm HEBEL Power Panel, 35mm gap, 70mm timber studs at 450mm maximum centres, 75mm (11kg/m ³) Bradford Glasswool, 13mm Standard Plasterboard.	63/52 Discontinuous

6.6 INTERTENANCY FLOORS

All intertenancy floors must have an Rw + Ctr \geq 50 and Ln,w + C_I< 62.

Examples of floor systems that satisfy BCA requirements for intertenancy floors are shown in Table 6.7.

Table 6.7: Floor System Examples

System	Description	Prediction Performance
Floor System 1	Vinyl/carpet with underlay or tiled floor with 5mm Vibramat underneath, 200mm thick HEBEL Floor Panel, 150mm air gap, 75mm 11kg/m3 glasswool insulation or equal, Resilient hangers, 13mm thick plasterboard	Rw + Ctr = 57dB According to the Hebel database this floor system complies with the relevant Ln,w + C _I requirement
Floor System 2	Regupol 5512 5mm underlay under 8mm timber laminate planks, 150 mm concrete, steel C-Joist (1.0-1.6mm) (90 mm x 38 mm), 90 mm air gap, 50 mm 11kg/m ³ glasswool 11kg/m ³ , 1 layer of 13mm standard plasterboard	Rw + Ctr = 63dB Ln,w + C _I = 50dB

6.7 ACOUSTIC SEALANTS

Where acoustic constructions are provided, all joints should be overlapped, and penetrations and gaps are to be fully sealed with acoustic sealant similar to:

• Bostik Fireban 1 or Seal'n'Flex;

- Hilti CP606 Firestop;
- CSR Gyprock Firemastic;
- Sika Firerate;
- Ramset Blaze Brake 201;

• Any other acoustic sealant that is polyurethane (non-hardening) with a minimum specific gravity > 1.5. Vipac should review any proposed alternatives.

6.8 GAPS AND SEALS

Junctions are required to be sealed airtight to achieve the required acoustic ratings between spaces. General guidelines for acoustic seals are as follows:

- All junctions and penetrations should be sealed airtight, and seals are to extend continuously along the length of the junction — to both sides of the partition;
- For walls where more than one layer of wall lining is required, all linings should be overlapped to minimise potential gaps between linings;
- It is recommended that plasterboard or other wall linings are cut such that the junction is as close a flush fit as possible. The maximum gap between joints in wall linings should not exceed 3mm.

For air gaps, the following detailing should be applied to maintain an adequate airtight seal through acoustic rated elements. For the following air gaps, the following details are recommended:

- Gaps < 5mm hard pack with glass wool insulation (minimum 32kg/m³) and apply mastic.
- Gaps > 5mm and up to 20mm: Pack with backing rods and dense insulation (50mm, 48kg/m³ glass wool) to seal and mastic.
- Gaps > 20mm pack with insulation, and patch with Plasterboard (the same thickness and number of layers as the base partition (applied either side) leaving small gap (~5mm), which can be sealed with mastic.
 - Recommended Mastic Sealants, are as follows:
 - Sikaflex "Pro;
 - Bostik "Fireban One";
 - Gyprock "Seal 'n Flex".

6.9 SERVICES/HYDRAULIC PIPING

Hot and cold water pipes do not need to be treated when penetrating an acoustic rated wall; however the gaps around the piping are required to be treated as per Section 6.8. All pipes, fittings and fixtures need to be isolated from the partitions by means of resilient sleeves or mounts. For partitions, Rw 45 or greater, services piping should be caulked at the penetration on both sides. The gap between the pipe and the gypsum board should not exceed 20 mm, where gaps exceed 20 mm the gap should be reduced to 20 mm by adding an additional piece of gypsum/plasterboard, or a sheet metal disk to cover the gap.

7 CONCLUSION

Vipac has conducted a DA noise assessment for the proposed development located at 77-81 Auburn Road & 19 Neutral Avenue, Birrong NSW, 2143.

Based upon the predicted noise levels and assessments, the proposed development is expected to comply with the project specific noise criterion, the standards set out by the NCC, and NSW Noise Policy (Industry), provided the recommendations in this report are implemented.

Appendix A Glossary of Terminology

Decibel, dB:

Unit of acoustic measurement. Measurements of power, pressure and intensity. Expressed in dB relative to standard reference levels.

dB (A):

Unit of acoustic measurement weighted to approximate the sensitivity of human hearing to sound frequency.

Sound Pressure Level, L_p (dB), of a sound:

20 times the logarithm to the base 10 of the ratio of the r.m.s. sound pressure to the reference sound pressure of 20 micro-Pascals. Sound pressure level is measured using a microphone and a sound level meter and varies with distance from the source and the environment.

Sound Power Level, L_w (dB), of a source:

10 times the logarithm to the base 10 of the ratio of the sound power of the source to the reference sound power of 1 Pico Watt. Sound power level cannot be directly measured using a microphone. Sound power level does not change with distance. The sound power level of a machine may vary depending on the actual operating load.

Ambient Sound:

Of an environment: the all-encompassing sound associated with that environment, being a composite of sounds from many sources, near and far.

Background noise:

The underlying level of noise present in the ambient noise, excluding the noise source under investigation, when extraneous noise is removed.

Percentile Level - L₉₀, L₁₀, etc:

A statistical measurement giving the sound pressure level which is exceeded for the given percentile of an observation period, e.g. L_{90} is the level which is exceeded for 90% of a measurement period. L_{90} is commonly referred to as the "background" sound level.

L AEQ,T:

Equivalent continuous A-weighted sound pressure level. The value of the A-weighted sound pressure level of a continuous steady sound that, within a measurement time interval T, has the same A-weighted sound energy as the actual time-varying sound.

Rating Background Level – RBL:

Method for determining the existing background noise level which involves calculating the tenth percentile from the L_{A90} measurements. This value gives the Assessment Background Noise Level (ABL). Rating Background Level is the median of the overall ABL.

Noise Monitoring Graphs

Figure 7.1 Noise Logger Graph 4-Day Period

Figure 7.2 Noise Logger Graph 8-Day Period